

Stochastic Optimization for Optimal Design and Operation of Quantum Devices, Algorithms, and Simulations

Jeffrey Larson and Stefan Wild

Mathematics and Computer Science Division Argonne National Laboratory

November 20, 2017

QC Challenges & Opportunities — Optimization

Key challenges for design and operation:

- Determining operational parameters for extended entanglement
- Quantum chip design
- Inherent stochasticity and noisy operation
- ► Algorithm design for near-term hybrid devices
- Simulation of future devices

Leverage Argonne strengths in computing & optimization

$$\underset{x \in \mathcal{D}}{\text{minimize}} \ \mathbb{E}_{\xi} \left[f(x; S(x; \xi)) \right]$$

- ▶ Objective f depends on simulation (or physical system) output S(x)
- Derivatives of S may not be available
- ▶ Constraints defining \mathcal{D} may or may not depend on S
- ▶ Dimension *n* is relatively small

Need specialized methods that exploit problem structure/knowledge

Initial Work: ASCR-Funded Quantum Algorithm Team

UCBerkeley 8-qubit device > 7²-qubit DOE device expected in 2018

LBNL+ANL+UCB+Harvard project

- novel quantum chemistry algorithms
- compilation, scheduling tools
- optimization, linear algebra

to model dynamical processes in chemistry (e.g., time dynamics quantum simulations)

Argonne's ORBIT for optimal state preparation of variational quantum eigensolver